1/31/2021 C Programming-Iterative Processing

Hands On C
500 Working Programs

Iterative Processing

Understanding Iterative Processing

localhost:8888/notebooks/C Programming-lterative Processing.ipynb 1/20



1/31/2021 C Programming-Iterative Processing
In [ ]: #include <stdio.h>

int main(void)

{
int age = 1;
while (age < 21)
++age; // same as a = a + 1
printf("Ending age %d\n", age);
}

In [ ]: #include <stdio.h>

int main(void)

{
int age = 1;
while (age < 21)
printf("Age %d\n", age++); // note postfix increment
printf("Ending age %d\n", age);
}

C's Iterative Operators

while
for

do while

localhost:8888/notebooks/C Programming-lterative Processing.ipynb 2/20



1/31/2021 C Programming-Iterative Processing

In [ ]: #include <stdio.h>
int main(void)
{

int count = ©;

while (count < 100)
printf("%d ", count++);

for (count = 0; count < 100; count++)
printf("%d ", count);

count = 0;

do {
printf("%d ", count++);

} while (count < 100);
}

Performing Statements a Specific Number of
Times

for (initialization; condition test; increment)
statements to execute

localhost:8888/notebooks/C Programming-lterative Processing.ipynb 3/20



1/31/2021 C Programming-Iterative Processing
In [ ]: #include <stdio.h>

int main(void)

{
int count;
for (count = 1; count <= 10; count++)
printf("%d\n", count);
}

In [ ]: #include <stdio.h>

int main(void)

{
int count;
for (count = 100; count != 0; count--)
printf("%d ", count);
}

In [ ]: #include <stdio.h>

int main(void)

{
char letter;
for (letter = 'A'; letter <= 'Z'; letter++)
printf("%c", letter);
¥

In [ ]: #include <stdio.h>

int main(void)

{
int count;
for (count = 100; count != @; count--)
printf("%d ", count);
}

localhost:8888/notebooks/C Programming-lterative Processing.ipynb 4/20



1/31/2021 C Programming-Iterative Processing

Using a Compound Statement within for

a =b; // simple statement

{ // compound statement within {}
a = b;
printf("%d %d\n", a, b);

}

In [ ]: #include <stdio.h>

int main(void)

{

int count;

for (count = ©; count < 10; count++)
{
if (count % 2 == 1)
printf("%d is odd\n", count);
else
printf("%d is even\n", count);

localhost:8888/notebooks/C Programming-lterative Processing.ipynb 5/20



1/31/2021 C Programming-Iterative Processing

Understanding Infinite Loops

In [ ]: #include <stdio.h>

int main(void)

{
int count;
for (count = 1; count >= @; count++) // Loop never ends
printf("%d ", count);
}

Parts of the for Loop are Optional

localhost:8888/notebooks/C Programming-lterative Processing.ipynb 6/20



1/31/2021 C Programming-Iterative Processing
In [2]: #include <stdio.h>
int main(void)
{

int count = ©;

for ( ; count < 10; count++)
printf("%d ", count);

01234567829

Changing the Count Increment

In [3]: #include <stdio.h>
int main(void)
{

int count;

for (count = 0; count <= 10; count += 2)
printf("%d ", count);

for (count = @; count <= 100; count += 5)

printf("%d ", count);

024681005 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

localhost:8888/notebooks/C Programming-lterative Processing.ipynb 7120



1/31/2021 C Programming-Iterative Processing

Understanding the Null Statement

; // a semicolon by itself is a Null statement

In [4]: #include <stdio.h»>
int main(void)
{

int count;

printf("Starting loop\n");
for (count = 0; count < 1000; count++)

printf("Ending loop");

Starting loop
Ending loop

localhost:8888/notebooks/C Programming-lterative Processing.ipynb 8/20



1/31/2021 C Programming-Iterative Processing

Using a for Loop with a Floating-Point Value

In [5]: #include <stdio.h>

int main(void)

{

float value;

for (value = 0.0; value <= 10.0; value += 0.5)
printf("%f ", value);

0.000000 0.500000 1.000000 1.500000 2.000000 2.500000 3.000000 3.500000 4.00000
@ 4.500000 5.000000 5.500000 6.000000 6.500000 7.000000 7.500000 8.000000 8.500
000 9.000000 9.500000 10.000000

localhost:8888/notebooks/C Programming-lterative Processing.ipynb 9/20



1/31/2021 C Programming-Iterative Processing

Delcaring the Loop Variable within for

In [6]: #include <stdio.h»>

int main(void)
{

for (int count = 0; count < 10; count++)
printf("%d ", count);
}

01234567829

Introduction to Variable Scope (Where the
Variable is Known)

localhost:8888/notebooks/C Programming-lterative Processing.ipynb 10/20



1/31/2021 C Programming-Iterative Processing
In [7]: #include <stdio.h>

int main(void)

{
for (int count = @; count < 10; count++)
printf("%d ", count);
printf("\nEnding Value %d", count);
}

/tmp/tmpgptjx76i.c: In function ‘main’:
/tmp/tmpgptjx76i.c:8:31: error: ‘count’ undeclared (first use in this function)
printf("\nEnding Value %d", count);

ANNNN

/tmp/tmpgptjx76i.c:8:31: note: each undeclared identifier is reported only once
for each function it appears in
[C kernel] GCC exited with code 1, the executable will not be executed

In [8]: #include <stdio.h>
int main(void)
{

int count = 100;

for (int count = @; count < 10; count++)
printf("%d ", count);

printf("\nEnding Value %d", count);
}

0123456789
Ending Value 100

localhost:8888/notebooks/C Programming-lterative Processing.ipynb 11/20



1/31/2021

localhost:8888/notebooks/C Programming-Iterative Processing.ipynb

In [9]:

Using C's Comma Operator within a for Loop

int a, b, c;

inta=1, b =2, c = 3;

#include <stdio.h>

int main(void)

{

C Programming-Iterative Processing

for (int a = 0, b = 100; a <= 10; a++, b++)
printf("a %d b %d\n", a, b);

100
101
102
103
104
105
106
107
108
109
10 b 110

[« DI <D D« DR « DI « DI « D DI < DI « D I )
OCoNOOTUVDd,WNREREOO
C OOCOCOCOCOCOCOoOOo

12/20



1/31/2021 C Programming-Iterative Processing

Using the break Statement within a for loop

In [ ]: #include <stdio.h>

int main(void)

{
for (int count = @; count <= 10; count++)
{
printf("%d ", count);
if (count == 5)
break;
}
}

In [ ]: #include <stdio.h>
int main(void)

{

for (int count = @; count <= 5; count++)
printf("%d ", count);

Using the continue Statement within for

localhost:8888/notebooks/C Programming-lterative Processing.ipynb 13/20



1/31/2021

In [ ]:

In [ ]:

C Programming-Iterative Processing

#include <stdio.h>

int main(void)
{

for (int count = 0; count <= 10; count++)

{
if ((count % 2) == 1)
continue;
printf("%d is even\n", count);

#include <stdio.h>

int main(void)

{

for (int count = @; count <= 10; count++)

{
if ((count % 2) == 0)
printf("%d is even\n", count);

Using Indentation and Whitespace to Improve

Readability

localhost:8888/notebooks/C Programming-Iterative Processing.ipynb

14/20



1/31/2021

In [ ]:

In [ ]:

C Programming-Iterative Processing
#include <stdio.h>

int main(void)

{

for (int count = @; count <= 10; count++)

{
if ((count % 2) == 9)
printf("%d is even\n", count);

}
}

#include <stdio.h>

int main(void)

{

for (int count = @; count <= 10; count++)

{
if ((count % 2) == 09)
printf("%d is even\n", count);

Using the C while Loop

localhost:8888/notebooks/C Programming-Iterative Processing.ipynb

15/20



1/31/2021 C Programming-Iterative Processing

In [ ]: #include <stdio.h>

int main(void)

{
int count = ©;
while (count < 10)
{
if (count % 2)
printf("%d is odd\n", count);
count++;
}
}

Preventing Infinite Loops Using ITEM

I Initialize count = 0;

T Test while (count < 10) {
E Execute printf("%d ", count);
M Modify count ++

}

localhost:8888/notebooks/C Programming-lterative Processing.ipynb 16/20



1/31/2021 C Programming-Iterative Processing
In [ ]: #include <stdio.h>

int main(void)

{
int count = ©; // Initialize
while (count < 10) // Test
{
printf("%d ", count); // Execute
count++; // Modify
}
}

Looping Using the C do Statement

localhost:8888/notebooks/C Programming-lterative Processing.ipynb 17/20



1/31/2021 C Programming-Iterative Processing
In [ ]: #include <stdio.h>

int main(void)

{
char response; // user's menu response
do {
printf("A Say Hello\n");
printf("B Say Goodbye\n");
printf("Q Quit\n");
response = getchar(); // Read a letter from the keyboard
switch (response) {
case 'A': printf("Hello, world\n");
break;
case 'B': printf("Goodbye, world\n");
break;
}
} while (response != 'Q");
}

Using the C goto Statement

localhost:8888/notebooks/C Programming-lterative Processing.ipynb 18/20



1/31/2021

In [ ]: #include <stdio.h>

int main(void)
{

int count = ©;

label:
printf("%d ", count++);
if (count <= 10)
goto label;

C Programming-Iterative Processing

What You will Learn Next

To improve the readability of their code and to reduce changes they must make
in the future, C programmers often define constants and macros.

##define SIZE 25

#define SQUARE(x) ((x)*(x))

localhost:8888/notebooks/C Programming-Iterative Processing.ipynb

19/20



1/31/2021 C Programming-Iterative Processing

localhost:8888/notebooks/C Programming-lterative Processing.ipynb 20/20



