
1/31/2021 C Programming-Iterative Processing

localhost:8888/notebooks/C Programming-Iterative Processing.ipynb 1/20

Understanding Iterative Processing

1/31/2021 C Programming-Iterative Processing

localhost:8888/notebooks/C Programming-Iterative Processing.ipynb 2/20

In []:

In []:

C's Iterative Operators

#include <stdio.h>

int main(void)
{
 int age = 1;

 while (age < 21)
 ++age; // same as a = a + 1

 printf("Ending age %d\n", age);
}

#include <stdio.h>

int main(void)
{
 int age = 1;

 while (age < 21)
 printf("Age %d\n", age++); // note postfix increment

 printf("Ending age %d\n", age);
}

while

for

do while

1/31/2021 C Programming-Iterative Processing

localhost:8888/notebooks/C Programming-Iterative Processing.ipynb 3/20

In []:

Performing Statements a Specific Number of
Times

#include <stdio.h>

int main(void)
{
 int count = 0;

 while (count < 100)
 printf("%d ", count++);

 for (count = 0; count < 100; count++)
 printf("%d ", count);

 count = 0;

 do {
 printf("%d ", count++);

 } while (count < 100);
}

for (initialization; condition test; increment)
 statements to execute

1/31/2021 C Programming-Iterative Processing

localhost:8888/notebooks/C Programming-Iterative Processing.ipynb 4/20

In []:

In []:

In []:

In []:

#include <stdio.h>

int main(void)
{
 int count;

 for (count = 1; count <= 10; count++)
 printf("%d\n", count);
}

#include <stdio.h>

int main(void)
{
 int count;

 for (count = 100; count != 0; count--)
 printf("%d ", count);
}

#include <stdio.h>

int main(void)
{
 char letter;

 for (letter = 'A'; letter <= 'Z'; letter++)
 printf("%c", letter);
}

#include <stdio.h>

int main(void)
{
 int count;

 for (count = 100; count != 0; count--)
 printf("%d ", count);
}

1/31/2021 C Programming-Iterative Processing

localhost:8888/notebooks/C Programming-Iterative Processing.ipynb 5/20

Using a Compound Statement within for

In []:

a = b; // simple statement

{ // compound statement within {}
 a = b;
 printf("%d %d\n", a, b);
}

#include <stdio.h>

int main(void)
{
 int count;

 for (count = 0; count < 10; count++)
 {
 if (count % 2 == 1)
 printf("%d is odd\n", count);
 else
 printf("%d is even\n", count);
 }
}

1/31/2021 C Programming-Iterative Processing

localhost:8888/notebooks/C Programming-Iterative Processing.ipynb 6/20

Understanding Infinite Loops
In []:

Parts of the for Loop are Optional

#include <stdio.h>

int main(void)
{
 int count;

 for (count = 1; count >= 0; count++) // loop never ends
 printf("%d ", count);
}

1/31/2021 C Programming-Iterative Processing

localhost:8888/notebooks/C Programming-Iterative Processing.ipynb 7/20

In [2]:

Changing the Count Increment
In [3]:

0 1 2 3 4 5 6 7 8 9

0 2 4 6 8 10 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

#include <stdio.h>

int main(void)
{
 int count = 0;

 for (; count < 10; count++)
 printf("%d ", count);
}

#include <stdio.h>

int main(void)
{
 int count;

 for (count = 0; count <= 10; count += 2)
 printf("%d ", count);

 for (count = 0; count <= 100; count += 5)
 printf("%d ", count);
}

1/31/2021 C Programming-Iterative Processing

localhost:8888/notebooks/C Programming-Iterative Processing.ipynb 8/20

Understanding the Null Statement

In [4]:

Starting loop
Ending loop

; // a semicolon by itself is a Null statement

#include <stdio.h>

int main(void)
{
 int count;

 printf("Starting loop\n");
 for (count = 0; count < 1000; count++)
 ;
 printf("Ending loop");
}

1/31/2021 C Programming-Iterative Processing

localhost:8888/notebooks/C Programming-Iterative Processing.ipynb 9/20

Using a for Loop with a Floating-Point Value
In [5]:

0.000000 0.500000 1.000000 1.500000 2.000000 2.500000 3.000000 3.500000 4.00000
0 4.500000 5.000000 5.500000 6.000000 6.500000 7.000000 7.500000 8.000000 8.500
000 9.000000 9.500000 10.000000

#include <stdio.h>

int main(void)
{
 float value;

 for (value = 0.0; value <= 10.0; value += 0.5)
 printf("%f ", value);
}

1/31/2021 C Programming-Iterative Processing

localhost:8888/notebooks/C Programming-Iterative Processing.ipynb 10/20

Delcaring the Loop Variable within for
In [6]:

Introduction to Variable Scope (Where the
Variable is Known)

0 1 2 3 4 5 6 7 8 9

#include <stdio.h>

int main(void)
{
 for (int count = 0; count < 10; count++)
 printf("%d ", count);
}

1/31/2021 C Programming-Iterative Processing

localhost:8888/notebooks/C Programming-Iterative Processing.ipynb 11/20

In [7]:

In [8]:

/tmp/tmpgptjx76i.c: In function ‘main’:
/tmp/tmpgptjx76i.c:8:31: error: ‘count’ undeclared (first use in this function)
 printf("\nEnding Value %d", count);
 ^~~~~
/tmp/tmpgptjx76i.c:8:31: note: each undeclared identifier is reported only once
for each function it appears in
[C kernel] GCC exited with code 1, the executable will not be executed

0 1 2 3 4 5 6 7 8 9
Ending Value 100

#include <stdio.h>

int main(void)
{
 for (int count = 0; count < 10; count++)
 printf("%d ", count);

 printf("\nEnding Value %d", count);
}

#include <stdio.h>

int main(void)
{
 int count = 100;

 for (int count = 0; count < 10; count++)
 printf("%d ", count);

 printf("\nEnding Value %d", count);
}

1/31/2021 C Programming-Iterative Processing

localhost:8888/notebooks/C Programming-Iterative Processing.ipynb 12/20

Using C's Comma Operator within a for Loop

In [9]:

a 0 b 100
a 1 b 101
a 2 b 102
a 3 b 103
a 4 b 104
a 5 b 105
a 6 b 106
a 7 b 107
a 8 b 108
a 9 b 109
a 10 b 110

int a, b, c;

int a = 1, b = 2, c = 3;

#include <stdio.h>

int main(void)
{
 for (int a = 0, b = 100; a <= 10; a++, b++)
 printf("a %d b %d\n", a, b);
}

1/31/2021 C Programming-Iterative Processing

localhost:8888/notebooks/C Programming-Iterative Processing.ipynb 13/20

Using the break Statement within a for loop
In []:

In []:

Using the continue Statement within for

#include <stdio.h>

int main(void)
{
 for (int count = 0; count <= 10; count++)
 {
 printf("%d ", count);
 if (count == 5)
 break;
 }
}

#include <stdio.h>

int main(void)
{
 for (int count = 0; count <= 5; count++)
 printf("%d ", count);
}

1/31/2021 C Programming-Iterative Processing

localhost:8888/notebooks/C Programming-Iterative Processing.ipynb 14/20

In []:

In []:

Using Indentation and Whitespace to Improve
Readability

#include <stdio.h>

int main(void)
{
 for (int count = 0; count <= 10; count++)
 {
 if ((count % 2) == 1)
 continue;
 printf("%d is even\n", count);
 }
}

#include <stdio.h>

int main(void)
{
 for (int count = 0; count <= 10; count++)
 {
 if ((count % 2) == 0)
 printf("%d is even\n", count);
 }
}

1/31/2021 C Programming-Iterative Processing

localhost:8888/notebooks/C Programming-Iterative Processing.ipynb 15/20

In []:

In []:

Using the C while Loop

#include <stdio.h>

int main(void)
{
for (int count = 0; count <= 10; count++)
{
if ((count % 2) == 0)
printf("%d is even\n", count);
}
}

#include <stdio.h>

int main(void)
{
 for (int count = 0; count <= 10; count++)
 {
 if ((count % 2) == 0)
 printf("%d is even\n", count);
 }
}

1/31/2021 C Programming-Iterative Processing

localhost:8888/notebooks/C Programming-Iterative Processing.ipynb 16/20

In []:

Preventing Infinite Loops Using ITEM

#include <stdio.h>

int main(void)
{
 int count = 0;

 while (count < 10)
 {
 if (count % 2)
 printf("%d is odd\n", count);

 count++;
 }
}

I Initialize count = 0;
T Test while (count < 10) {
E Execute printf("%d ", count);
M Modify count ++
 }

1/31/2021 C Programming-Iterative Processing

localhost:8888/notebooks/C Programming-Iterative Processing.ipynb 17/20

In []:

Looping Using the C do Statement

#include <stdio.h>

int main(void)
{
 int count = 0; // Initialize

 while (count < 10) // Test
 {
 printf("%d ", count); // Execute
 count++; // Modify
 }

}

1/31/2021 C Programming-Iterative Processing

localhost:8888/notebooks/C Programming-Iterative Processing.ipynb 18/20

In []:

Using the C goto Statement

#include <stdio.h>

int main(void)
{
 char response; // user's menu response

 do {
 printf("A Say Hello\n");
 printf("B Say Goodbye\n");
 printf("Q Quit\n");

 response = getchar(); // Read a letter from the keyboard

 switch (response) {
 case 'A': printf("Hello, world\n");
 break;
 case 'B': printf("Goodbye, world\n");
 break;
 }
 } while (response != 'Q');
}

1/31/2021 C Programming-Iterative Processing

localhost:8888/notebooks/C Programming-Iterative Processing.ipynb 19/20

In []:

What You will Learn Next

#include <stdio.h>

int main(void)
{
 int count = 0;

 label:
 printf("%d ", count++);
 if (count <= 10)
 goto label;
}

To improve the readability of their code and to reduce changes they must make
in the future, C programmers often define constants and macros.

#define SIZE 25

#define SQUARE(x) ((x)*(x))

1/31/2021 C Programming-Iterative Processing

localhost:8888/notebooks/C Programming-Iterative Processing.ipynb 20/20

